45 semiconductor nanocrystals as fluorescent biological labels
Semiconductor nanocrystals as fluorescent biological labels Semiconductor nanocrystals as fluorescent biological labels Author BRUCHEZ, M. JR 1 2; MORONNE, M 3; GIN, P 3; WEISS, S 4; ALIVISATOS, A. P 1 2 [1] Department of Chemistry, University of California, Berkeley, CA 94720, United States [2] Materials Sciences Division, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720, United States [3] Life Sciences Division, LBNL ... Semiconductor Quantum Rods as Single Molecule Fluorescent Biological Labels In this paper, we report the development of rod-shaped semiconductor nanocrystals (quantum rods) as fluorescent biological labels. Water-soluble biocompatible quantum rods have been prepared by surface silanization and applied for nonspecific cell tracking as well as specific cellular targeting.
Semiconductor nanocrystals as fluorescent biological labels. Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts.
Semiconductor nanocrystals as fluorescent biological labels
Semiconductor Nanocrystals as Fluorescent Biological Labels adshelp[at]cfa.harvard.edu The ADS is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement NNX16AC86A PDF Semiconductor Nanocrystals as Fluorescent Biological Labels Semiconductor Nanocrystals as Fluorescent Biological Labels Marcel Bruchez Jr., Mario Moronne, Peter Gin, Shimon Weiss,* A. Paul Alivisatos* Semiconductor nanocrystals were prepared for use as ßuorescent probes in biological staining and diagnostics. Compared with conventional ßuorophores, Semiconductor nanocrystals and fluorescence microscopy in biological ... The quantum dot-labeled molecules remain active for biochemical reactions and the tagged species produce brightly colored products [7, 8]. This methodology takes advantage of the efficient fluorescence and high photostability of the semiconductor quantum dots, representing a new class of biological dyes.
Semiconductor nanocrystals as fluorescent biological labels. Semiconductor nanocrystals for biological imaging - ScienceDirect Semiconductor nanocrystals (see glossary), also called quantum dots (QDs), are a new class of fluorescent biological labels. Originating from quantum confinement (see glossary) of electrons and holes within the nanocrystal core material, the fluorescence from QDs is unique compared with that from traditional organic fluorophores. For example, QDs exhibit high photostability, broad absorption, narrow and symmetric emission spectra (see glossary), slow excited state decay rates and large ... Semiconductor nanocrystals as fluorescent biological labels - Academia.edu Abstract Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are 3C-SiC Nanocrystals as Fluorescent Biological Labels Abstract. Silicon carbide nanocrystals are water-soluble, chemically inert, and highly fluorescent, and they may be idealas biological labels. After the uptake of3C-SiC nanocrystals, human fetal osteoblast (hFOB) cells exhibit brightgreen-yellow fluorescence (see image).The nanoparticles show high resistanceagainst photobleaching with no significant cytotoxicity. PDF Ovid: Bruchez: Science, Volume 281(5385).September 25, 1998.2 Semiconductor nanocrystals were prepared for use as fluorescent probes inbiological staining and diagnostics.Compared with conventional fluorophores, thenanocrystals have a narrow,
Semiconductor nanocrystals as fluorescent biological labels. - Abstract ... Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. Water-soluble quantum dots for multiphoton fluorescence ... - PubMed The use of semiconductor nanocrystals (quantum dots) as fluorescent labels for multiphoton microscopy enables multicolor imaging in demanding biological environments such as living tissue. We characterized water-soluble cadmium selenide-zinc sulfide quantum dots for multiphoton imaging in live animals. Semiconductor Nanocrystals as Fluorescent Biological Labels Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation Semiconductor Nanocrystals as Fluorescent Biological Labels Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts.
Semiconductor Nanocrystals as Fluorescent Biological Labels University of California, Los Angeles Abstract and Figures Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional... Semiconductor nanocrystals as fluorescent biological labels Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable. The advantages of the broad, continuous excitation spectrum were demonstrated in a dual-emission, single-excitation labeling experiment on mouse fibroblasts. Semiconductor Nanocrystals: The Next Thing in Fluorescent Probes "The development of semiconductor nanocrystals for biological labeling gives biologists an entire new class of fluorescent probes for which no small organic molecule equivalent exists," the authors of the Science paper wrote. "These nanocrystal probes can be complementary and in some cases may be superior to existing fluorophores." Semiconductor nanocrystals as fluorescent biological labels. Semiconductor nanocrystals were prepared for use as fluorescent probes in biological staining and diagnostics. Compared with conventional fluorophores, the nanocrystals have a narrow, tunable, symmetric emission spectrum and are photochemically stable.
Semiconductor nanocrystals and fluorescence microscopy in biological ... The quantum dot-labeled molecules remain active for biochemical reactions and the tagged species produce brightly colored products [7, 8]. This methodology takes advantage of the efficient fluorescence and high photostability of the semiconductor quantum dots, representing a new class of biological dyes.
PDF Semiconductor Nanocrystals as Fluorescent Biological Labels Semiconductor Nanocrystals as Fluorescent Biological Labels Marcel Bruchez Jr., Mario Moronne, Peter Gin, Shimon Weiss,* A. Paul Alivisatos* Semiconductor nanocrystals were prepared for use as ßuorescent probes in biological staining and diagnostics. Compared with conventional ßuorophores,
Semiconductor Nanocrystals as Fluorescent Biological Labels adshelp[at]cfa.harvard.edu The ADS is operated by the Smithsonian Astrophysical Observatory under NASA Cooperative Agreement NNX16AC86A
Post a Comment for "45 semiconductor nanocrystals as fluorescent biological labels"